Kernel Affine Projection Algorithms

نویسندگان

  • Weifeng Liu
  • José Carlos Príncipe
چکیده

The combination of the famed kernel trick and affine projection algorithms (APA) yields powerful nonlinear extensions, named collectively here KAPA. This paper is a follow-up study of the recently introduced kernel leastmean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least-squares (KRLS) and regularization networks. Therefore, many insights can be gained into the basic relations among them and the trade-off between computation complexity and performance. Several simulations illustrate its wide applicability. Index Terms Affine projection algorithms, kernel methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

Nonlinear Adaptive Filtering with a Family of Kernel Affine Projection Algorithms

In this chapter, the family of kernel affine projection algorithms with coherence criterion is presented. The proportionality principle is translated to the kernel-based version. A new algorithm called Kernel Proportionate Affine Projection Algorithm (KPAPA) is proposed. It is proved that the additional computational increase burden is independent of the order of the algorithm, being dependent ...

متن کامل

Speech Enhancement using Affine Projection Algorithm and Normalized Kernel Affine Projection Algorithm

The aim of the Speech Enhancement system is to improve the quality of noisy speech signal. This paper emphasize on enhancement of noisy speech by using Affine Projection Algorithm (APA) and Kernel Affine Projection Algorithm (KAPA). Noise is present everywhere in the environment, So Kernel adaptive filters are used to enhance noisy speech signal and shows the good improvement in increasing the ...

متن کامل

Affine Projection Algorithm Applied to Nonlinear Adaptive Filtering

In this paper, we present a framework for nonlinear adaptive filtering. It employs the formalism of reproducing kernel Hilbert spaces to incorporate nonlinearity into the classical affine projection algorithm. A nonlinear normalized LMS (NLMS) algorithm with kernels is also derived as a particular case. We propose a sparsification strategy that employs a coherence parameter to control the model...

متن کامل

Linear Multi View Reconstruction with Missing Data

General multi view reconstruction from affine or projective cameras has so far been solved most efficiently using methods of factorizing image data matrices into camera and scene parameters. This can be done directly for affine cameras [18] and after computing epipolar geometry for projective cameras [17]. A notorious problem has been the fact that these factorization methods require all points...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008